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1. Introduction
Many authors [1, 3] generalized sequences differently. In [2] Goksal Bilgici

defined generalized sequences {fn}∞n=0 and {ln}∞n=0. We can write ln after some
modification as follows:

ln = 2aln−1 − (a2 − b)ln−2 n ≥ 2 (1.1)

where l0 = 2, l1 = 2a.

Clearly, for (a, b) =

(
1

2
,
5

4

)
,

(
1

2
,
9

4

)
, (1, 2) the sequence {ln}∞n=0 reduces the Clas-

sical Lucas, Jacobsthal-Lucas and Pell-Lucas sequences, respectively. In this note
I have obtained the generating functions up to third order of generalized sequence
and hence find
1. Generating functions up to third order of Lucas sequence.
2. Generating functions up to third order of Jacobsthal-Lucas sequence.
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3. Generating functions up to third order of Pell-Lucas sequence.
The {ln} can also be expressed by the closed form formula.

ln =
αn − βn

α− β
(1.2)

where α and β are the roots of equation x2 − 2ax+ (a2 − b) = 0.
So that

α = a+
√
b and β = a−

√
b (1.3)

This gives
α + β = 2a, αβ = a2 − b, α− β = 2

√
b (1.4)

2. Generating Functions of {ln}
Let us solve second order linear recurrence by method of generating function.

Let sequence of integer {ln} defined as follows:

ln+2 − 2aln+1 + (a2 − b)ln = 0 n ≥ 0, (2.1)

where l0 = 2, and l1 = 2a.

Theorem 2.1. Generating function of sequence of integer {ln} is given by

∞∑
n=0

lnx
n =

A1

B1

, (2.2)

where A1 = 2(1− ax) and B1 = 1− 2ax+ (a2 − b)x2.
Proof. Multiplying xn on both the sides of (2.1) and taking sum from 0 to ∞.

∞∑
n=0

ln+2x
n − 2a

∞∑
n=0

ln+1x
n + (a2 − b)

∞∑
n=0

lnx
n = 0

1

x2

[
∞∑
n=0

lnx
n − l0 − l1x

]
− 2a

x

[
∞∑
n=0

lnx
n − l0

]
+ (a2 − b)

∞∑
n=0

lnx
n = 0

∞∑
n=0

lnx
n =

g(x)

[1− 2ax+ (a2 − b)x2]
, (2.3)

where g(x) = l0 + (l1 − 2al0)x.

Now since [1−2ax+(a2−b)x2]
∞∑
n=0

lnx
n = g(x) solving and neglecting terms contains
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second and higher power of x. Putting g(x) or alternatively putting initial values
in (2.3)

∞∑
n=0

lnx
n =

2(1− ax)

1− 2ax+ (a2 − b)x2
(2.4)

Now we proceed to find some more generating functions of {ln}.

Let F (x) =
∞∑
n=0

lnx
n =

A1

B1

where A1 = 2(1 − ax) and B1 = 1 − 2ax + (a2 − b)x2.

Then

∞∑
n=0

ln+1x
n =

F (x)− l0
x

⇒
∞∑
n=0

ln+1x
n =

1

x

[
A1

B1

− 2

]
Since l0 = 2

∞∑
n=0

ln+1x
n =

P1

B1

where P1 = 2a−2(a2−b)x and B1 = 1−2ax+(a2−b)x2. (2.5)

Again
∞∑
n=0

ln+2x
n =

1

x

[
∞∑
n=0

ln+1x
n − l1

]
⇒

∞∑
n=0

ln+2x
n =

1

x

[
P1

B1

− l1
]

∞∑
n=0

ln+2x
n =

1

x

[
P1

B1

− 2a

]
Since l1 = 2a

∞∑
n=0

ln+2x
n =

P2

B1

where P2 = 2(a2 + b)− 2a(a2 − b)x. (2.6)

So in general
∞∑
n=0

ln+kx
n =

Pk

B1

where Pk = lk − (a2 − b)lk−1x. (2.7)

Particular Cases. Now on setting value of a and b in (2.4) to (2.6)
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3. Generating Functions of {l2n}
In this section, again using same method we will find generating functions of

{l2n}.
Theorem 3.1. Generating functions of sequence of integer {l2n} is given by

∞∑
n=0

l2nx
n =

A2

B2

, (3.1)

where A2 = 4−4(2a2 + b)x+4a2(a2− b)x2 and B2 = 1− (3a2 + b)x+(a2− b)(3a2 +
b)x2 − (a2 − b)3x3.
Proof. To find pth order generating function for {ln} we have to expand {lpn}
by the Binomial theorem for which we will use (1.2). This gives {lpn} as a linear
combination of αnp, αn(p−1)βn, ..., αnβn(p−1), βnp. So this generating function has
denominator as (1 − αpx) (1 − αp−1βx)...(1 − αβp−1x) (1 − βpx). Hence to find
second order generating function for {ln} we have to expand {l2n} by the Binomial
theorem for which we will use (1.2). So that we can express as linear combination of
(α−β)2(1−α2x)(1−β2x)(1−αβx) and using (1.4) we get denominator of generating
functions for {ln} as B2 = 1− (3a2 + b)x+ (a2 − b)(3a2 + b)x2 − (a2 − b)3x3.
Consider

∞∑
n=0

l2nx
n =

g(x)

1− (3a2 + b)x+ (a2 − b)(3a2 + b)x2 − (a2 − b)3x3
(3.2)

g(x) =
[
1− (3a2 + b)x+ (a2 − b)(3a2 + b)x2 − (a2 − b)3x3

] ∞∑
n=0

l2nx
n
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Considering power of x up to two and neglecting higher powers

g(x) = 4− 4(2a2 + b)x+ 4a2(a2 − b)x2

Substituting value of g(x) in (3.2) we get required result. Now we proceed to find
some more generating functions of {l2n}.

Let F1(x) =
∞∑
n=0

l2nx
n =

A2

B2

where A2 = 4 − 4(2a2 + b)x + 4a2(a2 − b)x2 and

B2 = 1− (3a2 + b)x+ (a2 − b)(3a2 + b)x2 − (a2 − b)3x3. Then

∞∑
n=0

l2n+1x
n =

F1(x)− l20
x

⇒
∞∑
n=0

l2n+1x
n =

1

x

[
A2

B2

− 4

]
Since l0 = 2

∞∑
n=0

l2n+1x
n =

Q2

B2

where Q2 = 4a2 − 4(2a4 − a2b− b2)x+ 4(a2 − b)3x2. (3.3)

Again

∞∑
n=0

l2n+2x
n =

1

x

[
∞∑
n=0

l2n+1x
n − l21

]
⇒

∞∑
n=0

l2n+2x
n =

1

x

[
Q2

B2

− l21
]

∞∑
n=0

l2n+2x
n =

1

x

[
Q2

B2

− 4a2
]
⇒

∞∑
n=0

l2n+2x
n =

Q3

B2

(3.4)

where Q3 = 4a2 − (a2 − b)(3a2 + b)x+ (a2 − b)3x2.
Particular Cases. On setting value of a, b in (3.1), (3.3) and (3.4).
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4. Generating Functions of {l3n}
In this section, again using same method generating functions of {l3n} is ob-

tained.

Theorem 4.1. Generating function of sequence of integer {l3n} is given by

∞∑
n=0

l3nx
n =

A3

B3

, (4.1)

where A3 = x+ 4a(a2 − b)x2 + (a2 − b)3x3 and
B3 = 1−4a(a2 +b)x+(6a6 +2a4b−6a2b2−2b3)x2− (4a9 +8a3b3−8a7b−4ab4)x3 +
(a12 + b6 + 15a8b2 + 15a4b4 − 20a6b3 − 6a10b− 6a2b5)x4.
Proof. To find third order generating functions for {l3n} we have to expand {l3n}
by the Binomial theorem for which we will use (1.2). Consider

∞∑
n=0

l3nx
n =

g(x)

1− 4a(a2 + b)x+ (6a6 + 2a4b− 6a2b2 − 2b3)x2−

(4a9+8a3b3−8a7b−4ab4)x3+(a12+b6+15a8b2+15a4b4−20a6b3−6a10b−6a2b5)x4

(4.2)
g(x) = [1 − 4a(a2 + b)x + (6a6 + 2a4b − 6a2b2 − 2b3)x2 − (4a9 + 8a3b3 − 8a7b −
4ab4)x3 + (a12 + b6 + 15a8b2 + 15a4b4 − 20a6b3 − 6a10b− 6a2b5)x4]

∑∞
n=0 l

3
nx

n

Considering power of x up to three and neglecting higher powers

g(x) = 8−8a(3a2 +4b)x+8(3a6−b3−3a2b2 +a4b)x2−8(a9−a3b3−3a7b+3a5b2)x3

Substituting value of g(x) in (4.2) we get required result. Now we proceed to find
some more generating functions of {l3n}.
Let

F2(x) =
∞∑
n=0

l3nx
n =

A3

B3

where A3 = 8−8a(3a2+4b)x+8(3a6−b3−3a2b2+a4b)x2−8(a9−a3b3−3a7b+3a5b2)x3

and
B3 = 1−4a(a2 +b)x+(6a6 +2a4b−6a2b2−2b3)x2− (4a9 +8a3b3−8a7b−4ab4)x3 +
(a12 + b16 + 15a8b2 + 15a4b4 − 20a6b3 − 6a10b− 6a2b5)x4

Then

∞∑
n=0

l3n+1x
n =

F2(x)− l30
x

⇒
∞∑
n=0

l3n+1x
n =

1

x

[
A3

B3

− 8

]
Since l0 = 2
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∞∑
n=0

l3n+1x
n =

R3

B3

(4.3)

where R3 = 8a3 − 8(3a6 + a4b − 3a2b2 − b3)x + 8(3a9 + 9a3b3 − 5a7b − 3a5b2 −
4ab4)x2 − 8(a12 + b6 + 15a8b2 + 15a4b4 − 20a6b3 − 6a10b− 6a2b5)x3.
Again

∞∑
n=0

l3n+2x
n =

1

x

[
∞∑
n=0

l3n+1x
n − l31

]
⇒

∞∑
n=0

l3n+2x
n =

1

x

[
R3

B3

− l31
]

∞∑
n=0

l3n+2x
n =

1

x

[
R3

B3

− 8a3
]
⇒

∞∑
n=0

l3n+2x
n =

R4

B3

Since l1 = 2a (4.4)

where R4 = 8(a6 + b3 + 3a2b2 + 3a4b) − 8(3a9 − 11a3b3 + 7a7b − 3a5b2 + 4ab4)x +
8(3a12− b6− 15a8b2− 19a4b4 + 28a6b3− 2a10b+ 6a2b5)x2− 8(a15 + a3b6 + 15a11b2 +
15a7b4 − 20a9b3 − 6a13b− 6a5b5)x3.
Particular Cases: Now setting value of a, b in (4.1), (4.3) and (4.4).
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